skip to main content


Search for: All records

Creators/Authors contains: "Artemyev, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Relativistic electron precipitation to the Earth's atmosphere is an important loss mechanism of inner magnetosphere electrons, contributing significantly to the dynamics of the radiation belts. Such precipitation may be driven by electron resonant scattering by middle‐latitude whistler‐mode waves at dawn to noon; by electromagnetic ion cyclotron (EMIC) waves at dusk; or by curvature scattering at the isotropy boundary (at the inner edge of the electron plasma sheet anywhere on the nightside, from dusk to dawn). Using low‐altitude ELFIN and near‐equatorial THEMIS measurements, we report on a new type of relativistic electron precipitation that shares some properties with the traditional curvature scattering mechanism (occurring on the nightside and often having a clear energy/L‐shell dispersion). However, it is less common than the typical electron isotropy boundary and it is observed most often during substorms. It is seen equatorward of (and well separated from) the electron isotropy boundary and around or poleward of the ion isotropy boundary (the inner edge of the ion plasma sheet). It may be due to one or more of the following mechanisms: EMIC waves in the presence of a specific radial profile of the cold plasma density; a regional suppression of the magnetic field enhancing curvature scattering locally; and/or electron resonant scattering by kinetic Alfvén waves.

     
    more » « less
  2. Abstract

    The Earth's magnetosphere supports a variety of Magnetohydrodynamic (MHD) normal modes with Ultra Low Frequencies (ULF) including standing Alfvén waves and cavity/waveguide modes. Their amplitudes and frequencies depend in part on the properties of the magnetosphere (size of cavity, wave speed distribution). In this work, we use ∼13 years of Time History of Events and Macroscale Interactions during Substorms satellite magnetic field observations, combined with linearized MHD numerical simulations, to examine the properties of MHD normal modes in the regionL > 5 and for frequencies <80 mHz. We identify persistent normal mode structure in observed dawn sector power spectra with frequency‐dependent wave power peaks like those obtained from simulation ensemble averages, where the simulations assume different radial Alfvén speed profiles and magnetopause locations. We further show with both observations and simulations how frequency‐dependent wave power peaks atL > 5 depend on both the magnetopause location and the location of peaks in the radial Alfvén speed profile. Finally, we discuss how these results might be used to better model radiation belt electron dynamics related to ULF waves.

     
    more » « less
  3. Relativistic electron scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms for >1 MeV electron flux depletion in the Earth's radiation belts. Resonant electron interaction with EMIC waves is traditionally described by quasi-linear diffusion equations, although spacecraft observations often report EMIC waves with intensities sufficiently large to trigger nonlinear resonant interaction with electrons. An important consequence of such nonlinear interaction is the resonance broadening effect due to high wave amplitudes. In this study, we quantify this resonance broadening effect in electron pitch-angle diffusion rates. We show that resonance broadening can significantly increase the pitch-angle range of EMIC-scattered electrons. This increase is especially important for ∼1 MeV electrons, where, without the resonance broadening, only those near the loss cone (with low fluxes) can resonate with EMIC waves.

     
    more » « less
  4. Abstract

    In the Earth's radiation belts, an upper limit on the electron flux is expected to be imposed by the Kennel‐Petschek mechanism, through the generation of exponentially more intense whistler‐mode waves as the trapped flux increases above this upper limit, leading to fast electron pitch‐angle diffusion and precipitation into the atmosphere. Here, we examine a different upper limit, corresponding to a dynamical equilibrium in the presence of energetic electron injections and both pitch‐angle and energy diffusion by whistler‐mode chorus waves. We first show that during sustained injections, the electron flux energy spectrum tends toward a steady‐state attractor resulting from combined chorus wave‐driven energy and pitch‐angle diffusion. We derive simple analytical expressions for this steady‐state energy spectrum in a wide parameter range, in agreement with simulations. Approximate analytical expressions for the corresponding equilibrium upper limit on the electron flux are provided as a function of the strength of energetic electron injections from the plasma sheet. The analytical steady‐state energy spectrum is also compared with maximum electron fluxes measured in the outer radiation belt during several geomagnetic storms with strong injections, showing a good agreement at 100–600 keV.

     
    more » « less
  5. Abstract

    Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we investigate the evolution of turbulence in the Earth’s magnetosheath, a plasma system sharing many properties with the solar wind. The near-Earth space environment is being explored by multiple spacecraft missions, which may allow us to trace the evolution of magnetosheath fluctuations with simultaneous measurements at different distances from their origin, the Earth’s bow shock. We compare ARTEMIS and Magnetospheric Multiscale (MMS) Mission measurements in the Earth magnetosheath and Parker Solar Probe measurements of the solar wind at different radial distances. The comparison is supported by three numerical simulations of the magnetosheath magnetic and plasma fluctuations: global hybrid simulation resolving ion kinetic and including effects of Earth’s dipole field and realistic bow shock, hybrid and Hall-MHD simulations in expanding boxes that mimic the magnetosheath volume expansion with the radial distance from the dayside bow shock. The comparison shows that the magnetosheath can be considered as a miniaturized version of the solar wind system with much stronger plasma thermal anisotropy and an almost equal amount of forward and backward propagating Alfvén waves. Thus, many processes, such as turbulence development and kinetic instability contributions to plasma heating, occurring on slow timescales and over large distances in the solar wind, occur more rapidly in the magnetosheath and can be investigated in detail by multiple near-Earth spacecraft.

     
    more » « less
  6. Abstract

    Utilizing observations from the Electron Losses and Fields Investigation satellites, we present a statistical study of ∼2,000 events in 2019–2020 characterizing the occurrence in magnetic local time (MLT) and latitude of ≥50 keV electron isotropy boundaries (IBs) and associated electron precipitation. The isotropy boundary of an electron of a given energy is the magnetic latitude poleward of which persistent isotropized pitch angle distributions (Jprec/Jperp∼ 1) are first observed to occur, interpreted as resulting from magnetic field‐line curvature scattering in the equatorial magnetosphere. We find that energetic electron IBs can be well‐recognized on the nightside from dusk until dawn, under all geomagnetic activity conditions, with a peak occurrence rate of almost 90% near ∼22 hr in MLT, remaining above 80% from 21 to 01 MLT. The observed IBs span International Geophysical Reference Field (IGRF) magnetic latitudes of 60°–74° with a maximum occurrence between 66° and 71° (Lof 6–8), trending toward lower latitudes and premidnight local times with activity. The precipitating energy flux of ≥50 keV electrons averaged over the IB‐associated latitudes varies over four orders of magnitude, up to 1 erg/cm2‐s, and often includes wide‐energy electron spectra exceeding 1 MeV. The IB‐associated energies and precipitating fluxes also exhibit peak values near midnight for low activity, shifting toward premidnight for elevated activity. The average total precipitating power deposited over the high‐latitude nightside atmosphere (55°–80°; IGRFL ≥ 3) attributed to IBs is 10%–20%, or 10 MW, but at times can approach 100% of the total ≥50 keV electron energy deposition over the entire subauroral and auroral zone region, exceeding 1 GW.

     
    more » « less
  7. Abstract

    We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s−1magnetic field resolution. The CSs have thickness,λ,from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10λpin terms of local proton inertial length,λp. We found that the current density is larger for smaller-scale CSs,J0≈ 6 nAm−2· (λ/100 km)−0.56, but does not statistically exceed a critical value,JA,corresponding to the drift between ions and electrons of local Alvén speed. The observed trend holds in normalized units:J0/JA0.17·(λ/λp)0.51. The CSs are statistically force-free with magnetic shear angle correlated with CS spatial scale:Δθ19°·(λ/λp)0.5. The observed correlations are consistent with local turbulence being the source of proton kinetic-scale CSs in the solar wind, while the mechanisms limiting the current density remain to be understood.

     
    more » « less
  8. Abstract

    Electromagnetic ion cyclotron (EMIC) waves can drive radiation belt depletion and Low‐Earth Orbit satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC‐driven electron precipitation with much higher energy and pitch‐angle resolution than previously allowed. We collect EMIC‐driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s–100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (∼0.3 L), over 15–24 MLT and 5–8 L shells, stronger at ∼MeV energies and weaker down to ∼100–200 keV. Additionally, the observed loss cone pitch‐angle distribution agrees with quasilinear predictions at ≳250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low‐energy precipitation.

     
    more » « less
  9. Abstract

    We present a data set and properties of 18,785 proton kinetic-scale current sheets collected over 124 days in the solar wind using magnetic field measurements at 1/11 s resolution aboard the Wind spacecraft. We show that all of the current sheets are in the parameter range where reconnection is not suppressed by diamagnetic drift of the X-line. We argue this necessary condition for magnetic reconnection is automatically satisfied due to the geometry of current sheets dictated by their source, which is the local plasma turbulence. The current sheets are shown to be elongated along the background magnetic field and dependence of the current sheet geometry on local plasma beta is revealed. We conclude that reconnection in the solar wind is not likely to be suppressed or controlled by the diamagnetic suppression condition.

     
    more » « less